Influence of Bundle Diameter and Attachment Point on Kinematic Behavior in Double Bundle Anterior Cruciate Ligament Reconstruction Using Computational Model

By January 1, 2014October 22nd, 2018Biomechanics, Multibody Dynamics, Research

Influence of Bundle Diameter and Attachment Point on Kinematic Behavior in Double Bundle Anterior Cruciate Ligament Reconstruction Using Computational Model

Oh Soo Kwon, Tserenchimed Purevsuren, Kyungsoo Kim, Won Man Park, Tae-Kyu Kwon, Yoon Hyuk Kim, Computational and Mathematical Methods in Medicine, January 2014, Volume 2014, Article ID 948292, 8 pages.

  • Abstract

    A protocol to choose the graft diameter attachment point of each bundle has not yet been determined since they are usually dependent on a surgeon’s preference. Therefore, the influence of bundle diameters and attachment points on the kinematics of the knee joint needs to be quantitatively analyzed. A three-dimensional knee model was reconstructed with computed tomography images of a 26-year-old man. Based on the model, models of double bundle anterior cruciate ligament (ACL) reconstruction were developed. The anterior tibial translations for the anterior drawer test and the internal tibial rotation for the pivot shift test were investigated according to variation of bundle diameters and attachment points. For the model in this study, the knee kinematics after the double bundle ACL reconstruction were dependent on the attachment point and not much influenced by the bundle diameter although larger sized anterior-medial bundles provided increased stability in the knee joint. Therefore, in the clinical setting, the bundle attachment point needs to be considered prior to the bundle diameter, and the current selection method of graft diameters for both bundles appears justified.

    How Multibody Dynamics Simulation Technology is Used

    RecurDyn provides nonlinear force entities to model tissues such as ligaments, as well as contact modeling capabilities needed to simulate the movement of ligaments around bone and cartilage boundaries.

    Get This Paper

    Related Case Studies