

V9R2 New Functions

Inho, Song

FunctionBay, Inc. DA Team Principal Research Engineer

Index **MFBD** Amesim MBS-FE Couple Simplorer **FMI Gear NVH** * **Easy & Efficient Modeling Enhancement CAD Handling Functionality** SimulationX **EDEM** General Group Function Simulink System Navigator Imprint Function **Particleworks MBD** CoLink Model File Folder Control DEM **MFBD** Enhancement 2. Mesher Enhancement 2) Thermal Stress/Strain Effect(Try-Dev) Static Stress Superposition in Durability **Solving Performance** 3. 1) Advanced Hybrid Integrator Geo Contact Enhancement (3D Geo Curve to Surface) 3) C++ Solver Development for MFBD **Application Interface** 4. Supporting Flexible Wall (Rflex and Fflex)

- Tpart for Particle Cosimulation (Chain, Belt & Track)
- General Co-Sim Development (Multi-Cosim)
- Tire Interface

5. **Toolkits**

- **EHD Solving Speed Improvement**
- Gear Toolkit Enhancement
- Colink Enhancement
- Chain Toolkit Enhancement
- 5) Pnet

Shaft Modeler (in Gear NVH)

KISSsoft Interface (in Gear NVH)

> RFlex Enhancement for Efficient Housing Analysis

Acoustic Toolkit for Noise (Sound) Analysis

1. Easy & Efficient Modeling

- ✓ CAD Handling Functionality
- ✓ General Group Function
- ✓ System Navigator
- ✓ Imprint Function

✓ Etc.

- > CAD Import Enhancement
 - 1) Assembly Hierarchy (CAD)
 - 2) Various Import Methods
 - A. All Separation
 - B. Keep the Assembly Information
 - C. User defined.

> "General Group" function can support the grouping for the user selected entities. Therefore, user can manage the entities more easily and access the entity more quickly.

- ➤ Subsystem modeling method is efficient and quickly build up the model. However, when user change the subsystem (subsystem → main working plane or another subsystem), it is not easy to move.
- At that time, this "System Navigator" function is very useful to move the subsystem

New Imprint Functions

Amesim
Simplorer

Amesim
MFBD
MBS-FE Couple
FEA

> V9R2 provides two new imprint functions. And, it will help user to get the more good mesh quality

Model File Folder

Amesim
Simplorer

Amesim
MFBD
MBS-FE Couple
FEA

➤ User can move the current model file folder by clicking the "Model File Folder" button in dialog

2. MFBD Enhancements

- ✓ Mesher Enhancement
- ✓ FFlex Beam Element Property UI Improvement
- ✓ Thermal Stress/Strain Effect(Try-Dev)
- ✓ Static Stress Superposition in Durability
- ✓ RFlex & RFlexGen Enhancement

Local Remesh Enhancement including Remesh information & "Fit CAD Geometry" Option

11

Mesher Enhancement(2)

Simplorer Amesim MFBD
MBS-FE Couple FEA

"Use Current Shell Element Information" option

Mesher Enhancement(3)

Simplorer MBS-FE Couple FEA

Quality Check and Modification

Mesher Enhancement(3)

Modification

- > FFlex Beam Property Input UI Enhancement
 - This enhancement issue is also very important to support the "Shaft Modeler" for Gear NVH
 - 2) There are two main issues
 - A. Support Cross Section Library like BeamGroup in Professional
 - Until V9R1, there was no functionality to use the cross section library
 - b. In V9R2, Fflex beam property will support the "Cross Section Type"
 - B. Support 3D Geometry Display for Beam Element Cross Section
 - a. Only Circular Shapes are supported.

- Thermal stress is very important because it can cause very large stress on the materials when the temperature variation occurs
- 2. Main target is the thermal stress effect by thermal deformation in V9. Therefore, thermal analysis such as conduction, convection, and radiation should be performed in other software
- Thermal Stress/Strain Effect by using
 - Thermal Expansion Coefficient
 - Reference Temperature
 - Given Field Temperature
- Target version: V9R2(Try-Dev) or V9R3

□ Fundamental equation

$$\hat{\mathbf{\sigma}} = \mathbf{D}(\hat{\mathbf{\varepsilon}} - \hat{\mathbf{\varepsilon}}_t)$$

 $\hat{\mathbf{\epsilon}}_{\cdot}$: thermal strain

 $\hat{f \epsilon}$: total strain

$$\hat{\mathbf{\epsilon}}_{elastic} = \hat{\mathbf{\epsilon}} - \hat{\mathbf{\epsilon}}_{t}$$

☐ Isotropic Thermal Expansion:

coeff. of thermal expansion

$$\hat{\mathbf{\epsilon}}_t = \alpha T \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}^T$$
change in temperature

Thermal Expression = 20.0*step(time,0,1,1,1.5)

Stress Result with Thermal Effect

Amesim

Considering FEM (Static) Calculated Stress in Safety Factor Calculation

RFlex & RFlexGen Enhancement

Amesim Simplorer

FMI

RFlex Enhancement

- RFI Optimizer (Remove Modes)
 - A. When the user want to remove some modes, the user can use RFI Optimizer from V9R2

RFlexGen

- 1) Support GenRDRFI_API in Linux
- 2) License Integration in RecurDyn
 - A. FBHQ has an agreement to integrate the RFlexGen solver license into RecurDyn. So, the handling of RFlexGen solver will be much convenient from V9R2

3. Solver Performance

- ✓ Advanced Hybrid Integrator
- ✓ C++ Solver Development for MFBD
- ✓ Geo Contact Enhancement (3D Geo Curve to Surface)

Advanced Hybrid Integrator

Amesim Simplorer MBS-FE Couple

FEA)

➤ V9R1

- For Rigid and Rflex models, G-Alpha Time Integrator are used.
- For Fflex model, Hybird Integrator are used.
- Depending on the model, the RecurDyn integrator was changed. However, the characteristics of the integrator is little different. Sometimes, this is not good to accept the solution

> V9R2

 FBHQ are developing an advanced Hybrid integrator which can be used for any kind of models. This will give more accurate and consistent solution

1. C++ Solver (Try-Dev or Hidden)

- 1) This solver will be continuously tested and improved with code refactoring and optimization during V9 period as an alternative solver. This if C++ solver becomes acceptable by all customers, FB will change the solver from Fortran solver to C++ solver. That will be V10 (Maybe 3~4 years later).
- 2) The solution of C++ solver can be changed during V9 period in order to optimize the solution efficiently.
- 3) First Target is MFBD (V9R2 or V9R3). FB will continuously expand the coverage for the solutions step by step during V9 period.

2. Advantages of C++ Solver

- 1) Solving speed enhancement expected
- 2) Speed-up of development on demand from customers
- 3) Easy connection with various C++ libraries → Easy extensions and interfaces

- ➤ Geo Contact
 - 1) FB is are trying to improve the contact element with Geo Contact. In V9R2, we developing the 3D Geo Curve to Surface contact

2) Geo Curve to Surface Contact (with 3D Curve)

4. Application Interface

- ✓ Supporting Flexible Wall (Rflex and Fflex)
- ✓ Tpart for Particle Cosimulation (Chain, Belt & Track)
- ✓ General Co-Sim Development (Multi-Cosim)
- ✓ Tire Interface

Supporting Flexible Wall (RFlex and FFlex) Amesim

FMI

- ➤ In V9R2, the Particles interacts with **Flexible Wall**
- ➤ Wall contour display are supported.

Tpart for Particle Cosimulation (Chain, Belt & Track)

User can directly define the clone-body to wall for particle interaction in V9R2

General Co-Sim Development (Multi-Cosim)

FMI

Multiple Co-Sim function are developed in V9R2. Using this function, user can run the multiple co-simulation between RecurDyn and Other S/W(or RecurDyn)

PC #1 RecurDyn (Master) **SimulationX** Amesim1 (Slave) (Slave) Amesim2 (Slave)

> Tire Interface is developed for the Interfacing with External Tire Module.

5. Toolkits

- ✓ EHD Solving Speed Improvement
- ✓ Gear Involute Analytic Contact Entity Development
- ✓ Colink Enhancement
- ✓ Chain Toolkit Enhancement
- ✓ Pnet

> Piston Lubrication EHD

> Solving Speed Improvement

EHD Model Information		
No. of RFlex	2 EA - Piston - Cylinder)[
No. of EHD	3 EA - 1 Piston Lubrication - 2 Rot. EHD	
End Time	0.12 sec	
Steps	1000 steps	

Gear Toolkit Enhancement MFBD Amesim Simplorer MBS-FE Couple FMI > Gear Involute Contact **Gear 2D Contact V9R1** Arc segment **V9R2 Involute Analytic Contact** Pinion tooth $\overline{\mathbf{u}}_{p}^{f}$ Pinion R¢oordinate system Gear tooth Gear **Involute Analytic Curve** Glabal coordinate system RECURDYN © 2018 FunctionBay, Inc.

- Define the CoLink Model file in RecurDyn/GUI
- Julia Script

- Chain PNet Supporting
- Chain Bushing Force Display

MMS Toolkit PNet is supported in V9R2

FMI)

FFlex/RFlex PatchSet Creation Scripts

V9R1 - PatchSet Cration by Pnet only for FFlex

V9R2 – Additional creation methods

IFFlexBody, IRFlexBody

CreatePatchSetWithNodeSet(string strName, IFFlexNodeSet pNodeSet);

CreatePatchSetWithPatchesIndices(string strName, int[] arrPatchesIndices);

CreatePatchSetWithPatchesIndicesContinuous(string strName, int[] arrPatchesIndices, double dAngle, bool bCheckReverse);

CreatePatchSetWithElementsIDsContinuous(string strName, int[] arrElementID, double dAngle, bool bCheckReverse);

CreatePatchSetWithBox(string strName, IReferenceFrame pRefFrame, double dWidth, double dHeight, double dDepth)

Thank you

